Abstract
Pest management has long been a critical aspect of crop protection. Insect behavior is of great research value as an important indicator for assessing insect characteristics. Currently, insect behavior research is increasingly based on the quantification of behavior. Traditional manual observation and analysis methods can no longer meet the requirements of data volume and observation time. In this paper, we propose a method based on region localization combined with an improved 3D convolutional neural network for six grooming behaviors of Bactrocera minax: head grooming, foreleg grooming, fore-mid leg grooming, mid-hind leg grooming, hind leg grooming, and wing grooming. The overall recognition accuracy reached 93.46%. We compared the results obtained from the detection model with manual observations; the average difference was about 12%. This shows that the model reached a level close to manual observation. Additionally, recognition time using this method is only one-third of that required for manual observation, making it suitable for real-time detection needs. Experimental data demonstrate that this method effectively eliminates the interference caused by the walking behavior of Bactrocera minax, enabling efficient and automated detection of grooming behavior. Consequently, it offers a convenient means of studying pest characteristics in the field of crop protection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.