Abstract
In the real-time operation of cascade reservoirs, when the discharge flow of the upstream power station changes frequently, the downstream power station with a low head and small storage capacity has to adjust the gate or turbine frequently to keep the water level safe. This paper proposes a real-time optimal scheduling model based on model predictive control theory(MPC), considering the interaction between power generation and flood discharge. Firstly, the correlation analysis is carried out between the outflow of the Zhentouba hydropower station(ZTB) and the inflow of the Shaping II Hydropower Station(SP), and the spatio-temporal hydraulic connection between the ZTB and SP is obtained. The fuzzy relationship between tail water level and discharge flow is accurately described using numerical simulation, considering the interaction between power generation and discharge. Secondly, based on the precise description of inflow and outflow, a high-precision water level rolling prediction model is constructed using the water balance principle. Finally, based on the MPC, the real-time control model of SP is constructed. The results show that the water level process is steadier, with fewer gate adjustments. Compared with the observed number of gate adjustments in 2020, the number of reservoir gate adjustments after model optimization is reduced by 73.26%. It improves the operation efficiency and safety of the hydropower station and provides a guidance basis for the optimal operation of the SP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.