Abstract

Numerous studies have been undertaken to evaluate wind energy systems’ active and reactive power control, the energy produced, and their its link to distribution networks. This research makes a novel contribution to the discipline in this setting. The novelty of this work aims to design a new wind emulator and design a power control approach for a doubly fed induction generator (DFIG)-based wind system. A description of the system was provided first. Secondly, the control strategy was described in detail. Then, it was applied to both converters (machine and grid sides). Three stages were used to evaluate the control solution: (1) a MATLAB/Simulink simulation to validate the reference’s persistence (for both real and step wind speeds) and the system’s robustness, (2) implementation in real-time on a dSPACE-DS1104 board linked to an experimental laboratory bench, and (3) overlapped comparison experimental and simulated data to conduct a thorough quantitative and qualitative analysis using the root-mean-square error measures. The simulation and experimental findings demonstrate that the suggested model is valid and presents an excellent correlation between experimental and simulated results regarding wind speed variation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.