Abstract
AbstractIn-service cables of structures, such as those in cable-supported buildings and cable bridges (e.g., stay cables and suspenders), suffer from cumulative fatigue damage caused by dynamic loads (e.g., the cyclic traffic loads on cable bridges) and wind excitation (on the cable-supported buildings and bridges). Monitoring the time history of time-varying cable tension for assessing their fatigue damage is thus essential to diagnose their health condition and predict their future performance. Currently, embedded measurement devices such as anchor load cells, elastomagnetic (EM) sensors, and optical fiber Bragg grating (OFBG) sensors are able to directly record the time-varying cable tension time history; however, poor durability, high costs, and intensive labor of installation significantly hinder their applicability in practice. On the other hand, a vibration-based technique manifests itself as a convenient, cost-effective, and reliable approach to determine the cable tension, and is widely used; it ...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have