Abstract

After preparing a coherent vibrational wave packet in the hydrogen molecular ion by ionizing neutral H 2 molecules with a 6.5 fs, 760 nm laser pulse at 3 × 10 14 W/cm 2, we map its spatio-temporal evolution by the fragmentation induced with a second 6.5 fs laser pulse of doubled intensity. In this proof-of-principle experiment, we visualize the oscillations of this most fundamental molecular system, observe a dephasing of the vibrational wave packet and its subsequent revival. Whereas the experimental data exhibit an overall qualitative agreement with the results of a simple numerical simulation, noticeable discrepancy is found in the characteristic revival time. The most likely reasons for this disagreement originate from the simplifications used in the theoretical model, which assumes a Franck–Condon transition induced by the pump pulse with subsequent field-free propagation of the H 2 + vibrational wave packet, and neglects the influence of the rotational motion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.