Abstract

When a high-intensity laser pulse interacts with a plasma it generates immense fields that can accelerate charged particles. Combining high-speed polarimetry and plasma shadowgraph enables the detailed evolution of this process to be imaged in real time. Electron acceleration by laser-driven plasma waves1,2 is capableof producing ultra-relativistic, quasi-monoenergetic electron bunches3,4,5 with orders of magnitude higher accelerating gradients and much shorter electron pulses than state-of-the-art radio-frequency accelerators. Recent developments have shown peak energies reaching into the GeV range6 and improved stability and control over the energy spectrum and charge7. Future applications, such as the development of laboratory X-ray sources with unprecedented peak brilliance8,9 or ultrafast time-resolved measurements10 critically rely on a temporal characterization of the acceleration process and the electron bunch. Here, we report the first real-time observation of the accelerated electron pulse and the accelerating plasma wave. Our time-resolved study allows a single-shot measurement of the 5.8−2.1+1.9 fs electron bunch full-width at half-maximum (2.5−0.9+0.8 fs root mean square) as well as the plasma wave with a density-dependent period of 12–22 fs and reveals the evolution of the bunch, its position in the surrounding plasma wave and the wake dynamics. The results afford promise for brilliant, sub-angstrom-wavelength ultrafast electron and photon sources for diffraction imaging with atomic resolution in space and time11.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.