Abstract

Eco-cruising is considered an effective approach for reducing energy consumption of connected vehicles. Most eco-cruising controllers (ECs) do not comply with real-time implementation requirements when a short sampling interval is required. This paper presents a solution to this problem. Model predictive control (MPC) framework was applied to the speed-planning problem for a power-split hybrid electric vehicle (HEV). To overcome the limitations of time-domain MPC (TMPC), a nonlinear space-domain MPC (SMPC) was proposed in the space domain. A real-time iteration (RTI) algorithm was developed to accelerate nonlinear SMPC computations via generating warm initializations and subsequently forming the SMPC-RTI. Proposed speed controllers were evaluated in a hierarchical EC, where a heuristic energy management strategy was selected for powertrain control. Simulation results indicated that the proposed SMPC yields comparable fuel savings to the TMPC and the globally optimal solution. Meanwhile, SMPC reduced MPC computation time by 41% compared to TMPC, and SMPC-RTI further reduced MPC computation time without compromising optimization. During the hardware-in-loop (HIL) test, the mean computation time was 9.86 ms, demonstrating potential for real-time applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.