Abstract
This paper investigates the significance of a traffic signal control scheme that simultaneously adjusts all signal parameters, i.e., cycle time, split time and offset, in a road network. A novel framework of model predictive control (MPC) is designed that overcomes the limitations of other MPC based traffic signal control strategies, which are mostly restricted to control only split or green time in a fixed cycle ignoring signal offset. A simple macroscopic model of traffic tailored to MPC is formulated that describes traffic dynamics in the network at a short sampling interval. The proposed framework is demonstrated using a small road network with dynamically changing traffic flows. The parameters of the proposed model are calibrated by using data obtained from detailed microscopic simulation that yields realistic statistics. The model is transformed into a mixed logical dynamical system that is suitable to a finite horizon, and traffic signals are optimized using mixed integer linear programming (MILP) for a given performance index. The framework makes the signals flexibly turn to red and green by adapting quickly to any changes in traffic conditions. Results are also verified by microscopic traffic simulation and compared with other signal control schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Intelligent Transportation Systems Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.