Abstract
Locating multi-view faces in images with a complex background remains a challenging problem. In this paper, an integrated method for real-time multi-view face detection and pose estimation is presented. A simple-to-complex and coarse-to-fine view-based detector architecture has been designed to detect multi-view faces and estimate their poses efficiently. Both the pose estimators and the view-based face/nonface detectors are trained by a cost-sensitive AdaBoost algorithm to improve the generalization ability. Experimental results show that the proposed multi-view face detector, which can be constructed easily, gives more robust face detection and pose estimation and has a faster real-time detection speed compared with other conventional methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have