Abstract

The paper presents a genetic algorithm approach to real-time motion tracking of redundant and non-redundant manipulators. The joint angle trajectories are found by applying genetic operators to a set of suitably generated configurations so that the end-effector follows a desired workspace trajectory accurately. The probability of applying a particular genetic operator is adapted on-line to achieve fast convergence to the solution. The adaptation is based on two measures, namely, diversity and fitness of the generated configurations. In order to achieve real time tracking, special provisions are made so that only an appropriate small region in the joint space is searched. The tracking problem is solved at the position level rather the then velocity level. As such the proposed method does not use the manipulator Jacobian inverse or pseudo-inverse matrix and is shown to be free from problems such as excessive joint velocities due to singularities. Simulation results are presented for the 6-DOF Puma and the 7-DOF Robotic Research arm that demonstrate good tracking accuracy and reasonable joint velocities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call