Abstract

Abstract We present an integrated framework that leverages multiple weather radar calibration and monitoring techniques to provide real-time diagnostics on reflectivity calibration, antenna pointing, and dual-polarization moments. This framework uses a volume-matching technique to track the absolute calibration of radar reflectivity with respect to the Global Precipitation Measurement (GPM) spaceborne radar, the relative calibration adjustment (RCA) technique to track relative changes in the radar calibration constant, the solar calibration technique to track daily change in solar power and antenna pointing error, and techniques that track properties of light-rain medium to monitor the differential reflectivity and dual-polarization moments. This framework allows for an evaluation of various calibration and monitoring techniques. For example, we found that a change in the RCA is highly correlated to a change in absolute calibration, with respect to GPM, if a change in antenna pointing can first be ruled out. It is currently monitoring 67+ radars from the Australian radar network. Because of the diverse and evolving nature of the Australian radar network, flexibility and modularity are at the core of the calibration framework. The framework can tailor its diagnostics to the specific characteristics of a radar (band, beamwidth, etc.). Because of its modularity, it can be expanded with new techniques to provide additional diagnostics (e.g., monitoring of radar sensitivity). The results are presented in an interactive dashboard at different level of details for a wide and diverse audience (radar engineers, researchers, forecasters, and management), and it is operational at the Australian Bureau of Meteorology. Significance Statement Weather radars, like all instruments, require maintenance and upgrades. Rainfall measurements are highly variable and sensitive to change, and this can lead to inconsistencies within a radar network. Calibration is the process to counteract those inconsistencies. Any calibration requires a fixed standard to which the changed/upgraded radar can be compared. The SCAR calibration framework presented herein makes use of several standards to retrieve a full set of diagnostics about the radar data. We apply these techniques over the entire Australian weather radar network and demonstrate that, by using this integrated approach, absolute calibration can be achieved to within 1 dBZ of reflectivity, antenna pointing can be monitored within 0.1°, and the various measurements of the radars can be quality controlled.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call