Abstract
In this study, we propose an electrocardiogram (ECG) system for the simultaneous and remote monitoring of multiple heart patients. It consists of three main components: patient, sever, and monitoring units. The patient unit uses a wearable miniature sensor that continuously measures ECG signals and sends them to a smart mobile phone via a Bluetooth connection. In the mobile device, the ECG signals can be stored, displayed on screen, and automatically transmitted to a distant server unit over the internet; the server stores ECG data from several patients. Health care stakeholders use a monitoring unit to retrieve the ECG signals of multiple patients at any time from the server for display and real-time automatic analysis. The analysis includes segmentation of the ECG signal into separate heartbeats followed by arrhythmia detection and classification. When compared to existing real-time ECG systems, where the detection of abnormalities is usually performed using simple rules, the proposed system implements a real-time classification module that is based on a support vector machine (SVM) classifier. Extensive experimental results on ECG data obtained from a TechPatientTM simulator, a real person, and 20 records from the MIT arrhythmia database are reported and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Pattern Recognition and Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.