Abstract

An efficient method is proposed for the evaluation of theabsorption and the transport scattering coefficients from atime-resolved reflectance or transmittance distribution. Theprocedure is based on a library of Monte Carlo simulations and is fastenough to be used in a nonlinear fitting algorithm. Tests performedagainst both Monte Carlo simulations and experimental measurements ontissue phantoms show that the results are significantly better thanthose obtained by fitting the data with the diffusion approximation, especially for low values of the scattering coefficient. The methodrequires an a priori assumption on the value of theanisotropy factor g. Nonetheless, the transportscattering coefficient is rather independent of the exact knowledge ofthe g value within the range 0.7 < g < 0.9.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call