Abstract

The spread of antibiotic resistance is turning many of the currently used antibiotics less effective against common infections. To address this public health challenge, it is critical to enhance our understanding of the mechanisms of action of these compounds. Aminoglycoside drugs bind the bacterial ribosome, and decades of results from in vitro biochemical and structural approaches suggest that these drugs disrupt protein synthesis by inhibiting the ribosome's translocation on the messenger RNA, as well as by inducing miscoding errors. So far, however, we have sparse information about the dynamic effects of these compounds on protein synthesis inside the cell. In the present study, we measured the effect of the aminoglycosides apramycin, gentamicin, and paromomycin on ongoing protein synthesis directly in live Escherichia coli cells by tracking the binding of dye-labeled transfer RNAs to ribosomes. Our results suggest that the drugs slow down translation elongation two- to fourfold in general, and the number of elongation cycles per initiation event seems to decrease to the same extent. Hence, our results imply that none of the drugs used in this study cause severe inhibition of translocation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.