Abstract
Composite nanoparticles find application in catalysis, drug delivery, and energy storage and require increasingly fine control of their physical properties and composition. While composite nanoparticles have been widely synthesized and characterized, little work has systematically correlated the initial concentration of precursors and the final composition of flame synthesized composite nanoparticles. This relationship is explored in a diffusion flame aerosol reactor by coupling a scanning mobility particle sizer (SMPS) with an inductively coupled plasma optical emission spectrometer (ICP-OES). A framework for studying the relationship between the initial precursor concentrations of different elements and the final nanoparticle composition is explored. The size-resolved elemental composition was measured by directly injecting size-selected fractions of aggregated magnetite and silicon dioxide composite nanoparticles into the ICP-OES plasma. This work showed a correlation between precursor molar ratio and the measured elemental ratio in the mobility size range of 50 to 140 nm. Building on previous work studying size resolved elemental composition of engineered nanoparticles, the analysis is extended to flame synthesized composite nanoparticle aggregates in this work.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have