Abstract
This paper presents an intelligent control method based on artificial neural network (ANN) to prevent cascading failures and blackout in microgrid systems after N1 contingency condition. Microgrids have low inertia as compared to the utility power grids which makes their control very challenging. The main contribution of this work is to utilise the machine learning structure of ANN to prevent blackout and make microgrids more reliable and resilient. This method is able to relieve the congestion on lines by adaptive power re-dispatch to prevent consecutive line outages. The proposed ANN control approach is tested on an experimental test system. Experimental results show that the ANN approach provided accurate and robust control and management of the microgrid system by preventing a total system collapse. The technique is compared to a heuristic multi-agent system (MAS) approach based on communication interchanges. The ANN showed a faster and better response than the MAS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Power and Energy Conversion
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.