Abstract

The widespread use of synthetic dyes has led to the release of substantial amounts of dye-contaminated wastewater, posing significant environmental and health concerns. This study focuses on the use of anodic and electrochemically activated persulfate oxidation for the degradation of organic contaminants. Specifically, the structural variations of nine dyes in the indigoid and azo families, and their impact on the efficiency of electrochemical oxidation were analysed. An in situ continuous monitoring apparatus with a UV-visible detector was employed to collect data in real-time. The electrochemically activated persulfate system demonstrated higher efficiency compared to the anodic oxidation approach. In both systems the efficiency of decolourisation was highly dependent on the structure of the pollutant. Electron-withdrawing substituents in direct conjugation with the chromophore, bulky auxochromes, and extended aromatic systems significantly decreased the decolourisation efficiency. Conversely, changing the location of electron-withdrawing groups and adding electron-donating substituents increased the decolourisation efficiency, even overcoming the detrimental effects of bulky groups and extended conjugation. This type of systematic structural comparison study is essential for highlighting the interconnected nature of pollutant structure and degradation speed so that efficient electrochemical oxidation systems can be designed for the treatment of genuine wastewater effluent containing more than one pollutant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.