Abstract

An energy management controller based on shortest path stochastic dynamic programming (SP-SDP) is implemented and tested in a prototype vehicle. The controller simultaneously optimizes fuel economy and powertrain activity, namely gear shifts and engine on–off events. Previous work reported on the controller's design and its extensive simulation-based evaluation. This paper focuses on implementation of the controller algorithm in hardware. Practical issues concerning real-time computability, driver perception, and command timing are highlighted and addressed. The SP-SDP controllers are shown to run in real-time, gracefully handle variations in engine start and gear-shift-completion times, and operate in a manner that is transparent to the driver. A hardware problem with the test vehicle restricted its maximum engine torque, which prevented a reliable fuel economy assessment of the SP-SDP controller. The data that were collected indicated that SP-SDP controllers could be straightforwardly designed to operate at different points of the fuel economy tradeoff curve and that their fuel economy may equal or exceed that of a baseline industrial controller designed for the vehicle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.