Abstract

This paper aims at designing optimal gear shift strategies for conventional passenger vehicles equipped with discrete ratio transmissions. In order to study quantitatively an optimal trade-off between the fuel economy and the driveability, the vehicle driveability is addressed in a fuel-optimal gear shift algorithm based on dynamic programming by three methods: method 1, weighted inverse of power reserve; method 2, constant power reserve; method 3, variable power reserve. Furthermore, another method based on stochastic dynamic programming is proposed to derive an optimal gear shift strategy over a number of driving cycles in an average sense, hence taking into account the vehicle driveability. In contrast with the dynamic-programming-based strategy, the obtained gear shift strategy based on stochastic dynamic programming is real time implementable. A comparative analysis of all proposed gear shift methods is given in terms of the improvements in the fuel economy and the driveability. The variable-power-reserve method achieves the highest fuel economy without sacrificing the driveability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call