Abstract

This paper presents a hardware-in-the-loop (HIL) simulation technique applied to a series-resonant multiple-output inverter for new multi-inductor domestic induction heating platforms. The control of the topology is based on a system-on-programmable chip (SoPC) solution, which combines the MicroBlaze embedded soft-core processor and a customized peripheral that generates the power converter control signals. The firmware is written in C, and the customized peripheral is described using a hardware description language. Simulating the whole system using digital or mixed-signal simulation tools is a very time-consuming task due to the embedded processor model complexity, and additionally, it does not support tracing C instructions. To overcome these limitations, this paper proposes a real-time simulation test bench. The embedded processor core, peripherals, and the power converter model are all implemented into the same field-programmable gate array (FPGA). Using the hardware and software debugging tools supplied by the FPGA vendor, currents and voltages of the power converter model are monitored, and firmware C instructions are traced while running on the embedded processor core. Then, it is presented a design flow that is proven to be an effective and low-cost solution to verify the functionality of the customized peripheral and to implement a platform to perform firmware verification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.