Abstract
Kinetically stable and long-lived intermediates are crucial in monitoring the progress and understanding of supramolecular self-assembly of diverse aggregated structures with collective functions. Herein, the complex dynamics of an atomically precise CuI nanocluster [Cu8 (t BuC6 H4 S)8 (PPh3 )4 ] (Cu8a) is systematically investigated. Remarkably, by monitoring the aggregation-induced emission (AIE) and electron microscopy of the kinetically stable intermediates in real time, the directed self-assembly (DSA) process of Cu8a is deduced. The polymorphism and different emission properties of Cu NCs aggregates were successfully captured, allowing the structure-optical property relationship to be established. More importantly, the utilization of a mathematical "permutation and combination" ideology by introducing a heterogeneous luminescent agent of a carbon dot (CD) to Cu8a aggregates enriches the "visualization" fluorescence window, which offers great potential in real time application for optical sensing of materials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have