Abstract

During recombination, when Escherichia coli RecA mediates annealing across DNA repeats, Watson–Crick chemistry can only specify the complementarity of pairing, but not the most optimal frame of alignment. We describe that although stochastic alignments across poly(dA) and poly(dT) can lead to sub-optimally annealed duplexes containing ssDNA gaps/overhangs, the same are realigned into an optimal frame by a putative motor activity of RecA [Sen et al. (2000) Biochemistry 39, 10196–10206]. In the present study, we analyze the nature of realignment intermediates in real time, by employing a fluorescent probe, 2-aminopurine (2AP), which can not only report the status of RecA on the unstacked duplex, but also the fluidity of bases in such a filament. Although known to display a lower affinity for duplex DNA, RecA seems to remain functionally associated with these sub-optimally aligned repeat duplexes, until the realignment approaches completion. Moreover, a comparison of 2AP fluorescence in repeat versus mixed sequences indicates that bases in a RecA repetitive DNA filament exhibit higher degrees of freedom that might mediate a ‘non-planar hydrogen bonding cross talk’ across the bases on either strand. We discuss a model to explain the mechanistic basis of realignment and its implications in signaling the end of homology maximization, which triggers RecA fall off.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.