Abstract

A real-time fault-tolerant design for a d-dimensional hypercube multiprocessor with two modes of operation is presented and its reconfigurability is examined. The augmented hypercube, at stage one, has a spare node connected to each node of a subcube of dimension i, and the spare nodes are also connected as a (d−i)-dimensional hypercube. At stage two, the process is repeated by assigning one spare node to each (d−i−j)-dimensional spare subcube of stage one. Two modes of operations are considered, one under heavy computation or hard deadline and the other under light computation or soft deadline. By utilising the capabilities of wave-switching communication modules of the spare nodes, faulty nodes and faulty links can be tolerated. Both theoretical and experimental results are presented. Compared with other proposed schemes, the proposed approach can tolerate significantly more faulty components with a low overhead and no performance degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.