Abstract
Autoregressive conditional heteroscedastic (ARCH) processes and their extensions known as generalized ARCH (GARCH) processes are widely accepted for modelling financial time series, in particular stochastic volatility processes. The off-line estimation of ARCH and GARCH processes have been analyzed under a variety of conditions in the literature. The main contribution of this paper is a rigorous convergence analysis of a recursive estimation method for GARCH processes with restricted stability margin under reasonable technical conditions. The main tool in the convergence analysis is an appropriate modification of the theory of recursive estimation within a Markovian framework developed in Benveniste et al. (Adaptive Algorithms and Stochastic Approximations. Springer, Berlin, 1990). The basic elements of this theory will also be summarized. The viability of the method will be demonstrated by experimental results both for simulated and real data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.