Abstract

A real-time dynamic hardware-in-loop (HIL) simulator of an RTX real-time subsystem (RTSS) was developed by using LabVIEW (G language). The main idea of this work was to determine the feasibility and accuracy of widely available and highly competitive commercial products, such as personal computers on an RTSS, as an alternative to conventional prohibitive real-time simulators in dynamic studies of power systems. The implemented system is a self-contained heavy-duty gas turbine, governor, synchronous 200-MVA, 15.75-kV machine and a simplified electrical network. The HIL simulator was customized to interact with a 1518-kW static exciter. The role of this HIL simulator is to provide real-time digital and analog signals for static exciter systems (SES) and to simulate the mechanical and electrical components in a closed-loop, fixed-step solver applied by a well-known numerical solution method. This sophisticated yet exceptionally economic HIL simulator provides engineers with a safe environment to analyze the dynamic performance of static exciters and investigate their natural restraints and functionalities. It also provides a safe environment to analyze some naturally destructive tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call