Abstract
The imaging system based on a fish-eye lens generally has to correct the distortion of fish-eye images. The distortion correction based on the Bayer image signal is valuable, such as reducing the computation burden of image signal processing chips and providing a new imaging system structure of fish-eye lens. In this paper, a distortion correction method of fish-eye lens based on the Bayer image signal is proposed. Firstly, a distortion correction method that focuses on vertical straight lines and processing delay is proposed. Secondly, according to the correlation among color channels of the Bayer image, a novel Hermite interpolation method appropriate for Bayer image signal is proposed. Finally, a prototype system of fish-eye-lens-based imaging is established and the real-time field-programmable gate array (FPGA) implementation of the proposed method is demonstrated. The experiment demonstrates that the proposed distortion correction is not only characteristic of real-time processing and the smaller computation amount, but also applicable to embedded hardware.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.