Abstract
In this paper, we present a real-time parameter identification approach for diagnosing faults in the exhaust gas recirculation (EGR) system of Diesel engines. The proposed diagnostics method has the ability to detect and estimate the magnitude of a leak or a restriction in the EGR valve, which are common faults in the air handling system of a Diesel engine. Real-time diagnostics is achieved using a recursive-least-squares (RLS) method, as well as, a recursive formulation of a more robust version of the RLS method referred to as recursive total-least-squares method. The method is used to identify the coefficients in a static orifice flow model of the EGR valve. The proposed approach of fault detection is successfully applied to diagnose low-flow or high-flow faults in an engine and is validated using experimental data obtained from a Diesel engine test cell and a truck.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Dynamic Systems, Measurement, and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.