Abstract

Over the past few decades, numerous adaptive traffic signal control (ATSC) algorithms have been proposed to alleviate traffic congestion and optimize traffic mobility using real-time traffic data, such as data from connected vehicles (CVs). However, most of the existing ATSC algorithms do not consider optimizing traffic safety, likely because of the lack of tools to evaluate safety in real time. In this paper, we propose a novel ATSC algorithm for real-time safety optimization. The algorithm utilizes a traditional Reinforcement Learning approach (i.e., Q-learning) as well as recently developed extreme value theory (EVT) real-time crash prediction models. The algorithm was validated using real-world traffic video data collected from two signalized intersections in British Columbia. The results indicated that, compared with an existing fully actuated signal controller, the developed algorithm can significantly reduce the real-time crash risk by 43% to 45% at the intersection’s approaches even at low CVs market penetration rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.