Abstract

ABSTRACT Adaptive Traffic Signal Control (ATSC) is becoming a popular dynamic traffic management technique, especially with the emerging connected vehicles (CVs) technology. ATSC algorithms have been extensively considered in the literature for enhancing traffic mobility at signalized intersections. However, improving safety has rarely been used as an objective in existing ATSC algorithms. To fill this gap, this paper proposes a multi-criteria reinforcement learning based ATSC algorithm with two optimization objectives: real-time safety and mobility. The algorithm was trained on both objectives using traffic simulation. The safety objective was considered using extreme value theory (EVT) real-time crash risk evaluation models. Reducing the total intersection delay was the mobility objective. Different weights were considered in the training to account for both objectives simultaneously. The performance of the trained algorithm was then validated using real-world video data. Results show that the proposed multi-objective algorithm can improve both safety and mobility even under lower weights.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.