Abstract

To reduce contour error in contour-following tasks, a common approach is to design a controller based on the contour error information. Hence, real-time contouring error estimation plays an important role in contour-following control. However, the available second-order estimation formulas only apply to biaxial motion systems, and cannot be generalized to handle arbitrary contours tracked by multi-axis motion systems. In this paper, a point-to-curve distance function is defined, and its properties are investigated, especially, its second-order Taylor approximant is derived. On this basis, a novel second-order approach for calculating contour errors of arbitrary contours in real time is proposed. The inter-correlations between the present approach and four commonly used ones are classified. Simulation and experimental results demonstrate the effectiveness of the proposed contour error estimation algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call