Abstract

The rapid spread of drug-resistant pathogens and the declining discovery of new antibiotics have created a global health crisis and heightened interest in the search for novel antibiotics. Beyond their discovery, elucidating mechanisms of action has necessitated new approaches, especially for antibiotics that interact with lipidic substrates and membrane proteins. Here, we develop a methodology for real-time reaction monitoring of the activities of two bacterial membrane phosphatases, UppP and PgpB. We then show how we can inhibit their activities using existing and newly discovered antibiotics such as bacitracin and teixobactin. Additionally, we found that the UppP dimer is stabilized by phosphatidylethanolamine, which, unexpectedly, enhanced the speed of substrate processing. Overall, our results demonstrate the potential of native mass spectrometry for real-time biosynthetic reaction monitoring of membrane enzymes, as well as their in situ inhibition and cofactor binding, to inform the mode of action of emerging antibiotics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.