Abstract

A critical dimension measurement system for TFT-LCD patterns has been implemented in this study. To improve the measurement accuracy, an imaging auto-focus algorithm, fast pattern-matching algorithm, and precise edge detection algorithm with subpixel accuracy have been developed and implemented in the system. The optimum focusing position can be calculated using the image focus estimator. The two-step auto-focusing technique has been newly proposed for various LCD patterns, and various focus estimators have been compared to select a stable and accurate one. Fast pattern matching and subpixel edge detection have been developed for measurement. The new approach, called NEMC, is based on edge detection for the selection of influential points; in this approach, points having a strong edge magnitude are only used in the matching procedure. To accelerate pattern matching, point correlation and an image pyramid structure are combined. Edge detection is the most important technique in a vision inspection system. A two-stage edge detection algorithm has been introduced. In the first stage, a first order derivative operator such as the Sobel operator is used to place the edge points and to find the edge directions using a least-square estimation method with pixel accuracy. In the second stage, an eight-connected neighborhood of the estimated edge points is convolved with the LoG (Laplacian of Gaussian) operator, and the LoG-filtered image can be modeled as a continuous function using the facet model. The measurement results of the various patterns are finally presented. The developed system has been successfully used in the TFT-LCD manufacturing industry, and repeatability of less than 30 nm (3 σ) can be obtained with a very fast inspection time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call