Abstract

Surface and interface, with unique local characteristics different from bulk structure, are of great significance in various applications of metal-organic frameworks (MOFs), which should be studied by real-space imaging methods, such as electron microscopy. However, it is still challenging to atomically resolve these local structures in MOFs, because they are even more sensitive to electron irradiation. Here, we use integrated differential phase contrast scanning transmission electron microscopy (iDPC-STEM) to achieve the atomic imaging of both the metal nodes and organic linkers in UiO-66 (Zr) nanocrystals and their assembly. After adding acetic acid, we modulate the whole process of MOF assembly and observe the organic linkers at both the surfaces and twin interfaces in the chemically assembled UiO-66 (Zr) crystals by the iDPC-STEM. These results bring us a deeper understanding on the role of acid modulators that promote the MOF assembly by generating the missing-linker defects on the crystal surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call