Abstract

Spin-polarized scanning tunneling microscopy (SP-STM) experiments on ultrathin films with non-collinear spin textures demonstrate that resonant tunneling allows for atomic-scale spin-sensitive imaging in real space at tip-sample distances of up to 8 nm. Spin-polarized resonance states evolving between the foremost atom of a magnetic probe tip and the opposed magnetic surface atom are found to provide a loophole from the hitherto existing dilemma of losing spatial resolution when increasing the tip-sample distance in a scanning probe setup. Bias-dependent series of SP-STM images recorded via resonant tunneling reveal spin sensitivity at resonance conditions, indicating that the spin-polarized resonance states act as mediators for the spin contrast across the nm-spaced vacuum gap. With technically feasible distances in the nm regime, resonant tunneling in SP-STM qualifies for a spin-sensitive read-write technique with ultimate lateral resolution in future spintronic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call