Abstract
The hardness characteristic of nano-polycrystalline cBN synthesized by direct conversion sintering was thoroughly investigated using Vickers and Knoop indenters. It was found that nano-polycrystals consisting of smaller cBN grains increase the elastic recovery of indentations during unloading of the indenters and the diagonal of Vickers indentations and the minor diagonal of Knoop indentations significantly decrease in length. Thus, if a Vickers indenter is used, the apparent hardness value increases, making it impossible to perform an accurate evaluation, e.g. incorrect Vickers hardness values in excess of 80GPa were obtained from nano-polycrystalline cBN with a grain size of 50nm or less. On the other hand, it was verified that a Knoop indenter ensures an accurate hardness evaluation even if the constituent grains are fine because its major diagonal length which is used for measurement is less susceptible to elastic recovery. In an accurate evaluation of the hardness of different types of nano-polycrystalline cBN using a Knoop indenter, the hardness of each type of cBN was around 45GPa, and there was no clear Hall–Petch relationship between hardness and grain size without a slight bell-like correlation. These results suggest that reported hardness values higher than 80GPa of similar nano-polycrystalline cBN evaluated using a Vickers indenter are incorrect values caused by elastic recovery occurring at the indentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.