Abstract
Quantum physics is primarily concerned with real eigenvalues, stemming from the unitarity of time evolutions. With the introduction of PT symmetry, a widely accepted consensus is that, even if the Hamiltonian of the system is not Hermitian, the eigenvalues can still be purely real under specific symmetry. Hence, great enthusiasm has been devoted to exploring the eigenvalue problem of non-Hermitian systems. In this work, from a distinct perspective, we demonstrate that real eigenvalues can also emerge under the appropriate recursive condition of eigenstates. Consequently, our findings provide another path to extract the real energy spectrum of non-Hermitian systems, which guarantees the conservation of probability and stimulates future experimental observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.