Abstract
Let f,g: (C2,0) → (C,0) be two holomorphic germs with isolated singularities and no common branches and let Lf, [Formula: see text] be their links. We prove that the real analytic germ [Formula: see text] has an isolated singularity at 0 if and only if the link Lf ∪ -Lg is fibred. This was conjectured by Rudolph in [14]. If this condition holds, then the underlying Milnor fibration is an open-book fibration of the link Lf ∪ -Lg which coincides with [Formula: see text] in a tubular neighbourhood of this link. This enables one to realize a large family of fibrations of plumbing links in S3 as the Milnor fibrations of some real analytic germs [Formula: see text].
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have