Abstract

Recently, Aceto, Fokkink and Ingólfsdóttir proposed an algorithm to turn any sound and ground-complete axiomatisation of any preorder listed in the linear time–branching time spectrum at least as coarse as the ready simulation preorder, into a sound and ground-complete axiomatisation of the corresponding equivalence—its kernel. Moreover, if the former axiomatisation is ω-complete, so is the latter. Subsequently, de Frutos Escrig, Gregorio Rodríguez and Palomino generalised this result, so that the algorithm is applicable to any preorder at least as coarse as the ready simulation preorder, provided it is initials preserving. The current paper shows that the same algorithm applies equally well to weak semantics: the proviso of initials preserving can be replaced by other conditions, such as weak initials preserving and satisfying the second τ-law. This makes it applicable to all 87 preorders surveyed in “the linear time–branching time spectrum II” that are at least as coarse as the ready simulation preorder. We also extend the scope of the algorithm to infinite processes, by adding recursion constants. As an application of both extensions, we provide a ground-complete axiomatisation of the CSP failures equivalence for BCCS processes with divergence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.