Abstract

This paper contributes to the study of the equational theory of the semantics in van Glabbeek's linear time - branching time spectrum over the language BCCSP, a basic process algebra for the description of finite synchronization trees. It offers an algorithm for producing a complete (respectively, ground-complete) equational axiomatization of a behavioral congruence lying between ready simulation equivalence and partial traces equivalence from a complete (respectively, ground-complete) inequational axiomatization of its underlying precongruence--that is, of the precongruence whose kernel is the equivalence. The algorithm preserves finiteness of the axiomatization when the set of actions is finite. It follows that each equivalence in the spectrum whose discriminating power lies in between that of ready simulation and partial traces equivalence is finitely axiomatizable over the language BCCSP if so is its defining preorder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.