Abstract

Reactivity of the 4-coordinate molecule (PNP)RhO (PNP is ((t)Bu2PCH2SiMe2)2N) towards CO proceeds stepwise, first forming an η(2)-CO2 complex, by a mechanism which involves a preliminary adduct of CO on Rh, then a second CO displaces CO2. Reaction of the oxo complex with CO2 occurs in time of mixing even at low temperature to form (PNP)Rh(η(2)-CO3), with no intermediate detectable. DFT calculations indicate an initial bond formation between the oxo center and the CO2 carbon. Reaction of (PNP)RhO with H2 occurs only at a 1 : 2 molar stoichiometry, to ultimately form (PNP)Rh(H)2 and free H2O. No intermediate reaches detectable population even at -60 °C, but DFT mapping of various possible mechanisms on the singlet energy surface shows that the nearly equi-energetic (PNP)Rh(H2O) and (PNP)RhH(OH) are formed, but only the latter readily adds the second molecule of H2 to proceed to the observed products; these reactions thus both involve heterolytic splitting of H2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call