Abstract

Heme proteins bind the gaseous ligands XO (X = C, N, O) via backbonding from Fe d(pi) electrons. Backbonding is modulated by distal interactions of the bound ligand with the surrounding protein and by variations in the strength of the trans proximal ligand. Vibrational modes associated with FeX and XO bond stretching coordinates report on these interactions, but the interpretive framework developed for CO adducts, involving anticorrelations of nuFeC and nuCO, has seemed not to apply to NO adducts. We have now obtained an excellent anticorrelation of nuFeN and nuNO, via resonance Raman spectroscopy on (N-methylimidazole)Fe(II)TPP-Y(NO), where TPP-Y is tetraphenylporphine with electron-donating or -withdrawing substituents, Y, that modulate the backbonding; the problem of laser-induced dissociation of the axial base was circumvented by using frozen solutions. New data are also reported for CO adducts. The anticorrelations are supported by DFT calculations of structures and spectra. When protein data are examined, the NO adducts show large deviations from the modeled anticorrelation when there are distal H-bonds or positive charges. These deviations are proposed to result from closing of the FeNO angle due to a shift in the valence isomer equilibrium toward the Fe(III)(NO-) form, an effect that is absent in CO adducts. The differing vibrational patterns of CO and NO adducts provide complementary information with respect to protein interactions, which may help to elucidate the mechanisms of ligand discrimination and signaling in heme sensor proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call