Abstract

FeNO vibrational frequencies were investigated for a series of myoglobin mutants using isotope-edited resonance Raman spectra of (15/14)NO adducts, which reveal the FeNO and NO stretching modes. The latter give rise to doublet bands, as a result of Fermi resonances with coincident porphyrin vibrations; these doublets were analyzed by curve-fitting to obtain the nuNO frequencies. Variations in nuNO among the mutants correlate with the reported nuCO variations for the CO adducts of the same mutants. The correlation has a slope near unity, indicating equal sensitivity of the NO and CO bonds to polar influences in the heme pocket. A few mutants deviate from the correlation, indicating that distal interactions differ for the NO and CO adducts, probably because of the differing distal residue geometries. In contrast to the strong and consistent nuFeC/nuCO correlation found for the CO adducts, nuFeN correlates only weakly with nuNO, and the slope of the correlation depends on which residue is being mutated. This variability is suggested to arise from steric interactions, which change the FeNO angle and therefore alter the Fe-NO and N-O bond orders. This effect is modeled with Density Functional Theory (DFT) and is rationalized on the basis of a valence isomer bonding model. The FeNO unit, which is naturally bent, is a more sensitive reporter of steric interactions than the FeCO unit, which is naturally linear. An important additional factor is the strength of the bond to the proximal ligand, which modulates the valence isomer equilibrium. The FeNO unit is bent more strongly in MbNO than in protein-free heme-NO complexes because of a combination of a strengthened proximal bond and distal interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call