Abstract
Kinetic studies of the reactions of two previously characterized copper(iii)-hydroxide complexes (LCuOH and NO2 LCuOH, where L = N,N'-bis(2,6-diisopropylphenyl)-2,6-pyridine-dicarboxamide and NO2 L = N,N'-bis(2,6-diisopropyl-4-nitrophenyl)pyridine-2,6-dicarboxamide) with a series of para substituted phenols (XArOH where X = NMe2, OMe, Me, H, Cl, NO2, or CF3) were performed using low temperature stopped-flow UV-vis spectroscopy. Second-order rate constants (k) were determined from pseudo first-order and stoichiometric experiments, and follow the trends CF3 < NO2 < Cl < H < Me < OMe < NMe2 and LCuOH < NO2 LCuOH. The data support a concerted proton-electron transfer (CPET) mechanism for all but the most acidic phenols (X = NO2 and CF3), for which a more complicated mechanism is proposed. For the case of the reactions between NO2 ArOH and LCuOH in particular, competition between a CPET pathway and one involving initial proton transfer followed by electron transfer (PT/ET) is supported by multiwavelength global analysis of the kinetic data, formation of the phenoxide NO2 ArO- as a reaction product, observation of an intermediate [LCu(OH2)]+ species derived from proton transfer from NO2 ArOH to LCuOH, and thermodynamic arguments indicating that initial PT should be competitive with CPET.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have