Abstract

ABSTRACTNitrogen mono-oxide and sulfur dioxide can be removed by simultaneous absorption into aqueous mixed solutions of sulfite and [FeII(edta)]H2O)]2−, ferrous ion coordinated to an anion of ethylene-diaminetetraacetic acid (EDTA or edta). In the industrial system with coexisting oxygen in the gas phase, [FeII(edta)](H2O)]2− complex is oxidized to [FeIII(edta)](H2O)]− by molecular oxygen. Because the ferric complex has no capability for reaction with NO, the suppression of this undesired oxidation process is a very important technological problem to be overcome. In our preceding work, we discussed the reduction kinetics of ferric ion by metal powder on the basis of the kinetic data regarding the ferric ion reduction in aqueous solutions of [FeIII(edta)](H2O)]− containing aluminum, tin or zinc powders. Zinc powder of normal size was recognized as an effective reducing agent. In the present work, augmentation of reducing capability of zinc powder was examined more. The rate of reduction of nano-size zinc powder was found to be about 11 times higher than that of normal-size zinc one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.