Abstract
Present work addresses the reactivity of several phenyl-substituted metal-carbene complexes with 4-methylstyrene by means of density functional theory OPBE simulations. Different paths that lead to cyclopropanation were explored and compared to the olefin metathesis mechanism. For this purpose, we chose four different catalysts: (i) the Grubbs second-generation olefin metathesis catalyst, (ii) a Grubs second-generation-like complex, in which ruthenium is replaced by iron, and (iii) two iron carbene complexes (a piano stool and a porphyrin iron carbene) that experimentally catalyze alkene cyclopropanation. Results suggest that the nature of the applying mechanism is very sensitive to the coordination around the metal center and the spin state of the metal-carbene complex. Cyclopropanation by open-shell metal-carbene complexes seems to preferentially proceed through a two-step radical mechanism, in which the two C-C bonds are sequentially formed (path C). Singlet-state carbenes proceed either through a direct attack of the olefin to the carbene (path D) when the formation of the metallacycle is not feasible or through a reductive elimination from the metallacyclobutane when this intermediate is accessible both kinetically and thermodynamically (path B).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.