Abstract

Single-site transition-metal-doped photocatalysts can potentially be used for partial oxidation of methane (POM) at remote sites where natural gas is extracted and methane is often flared or released to the atmosphere. While there have been several investigations into the performance of vanadium, there has been no general survey of the performance of other metals. This work aims and examines Cr, Nb, and W metal oxide materials embedded in amorphous SiO2 to determine the viability of each metal in catalyzing the POM. Photoexcited states are examined to determine the nature of the photoactivated species, and then the subsequent POM reaction mechanisms are elucidated. Using the calculated energies of reaction intermediates and transition states, the rate of methanol formation is evaluated through the use of a microkinetic model. The findings indicate that all three metals are potentially more suitable for catalyzing POM than vanadium but that niobium shows the most favorable energy profile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call