Abstract

Boron-based materials have high energy density making them suitable as additives in propulsion systems. However, the lack of prompt ignition, for example, creates a challenge in harnessing the energy. In this work, mixtures of boron carbide and four common metal oxides (CuO, MnO2, Bi2O3, Fe2O3) are studied as a way to increase the reactivity of boron-based materials. Both burning rate and thermal analysis are used to determine the response of mixtures to fast and slow heating rates, respectively. Mixtures with CuO or Bi2O3 burned the fastest whereas Fe2O3 mixtures would not ignite and MnO2 samples had a burning rate approximately 15% that of the fastest mixtures. The thermal analysis determined that the gas produced from carbon oxidation was most influential on the combustion rate and not the thermal conductivity or oxygen release temperature of the oxide. Experimental observation indicates that the boron component is oxidized in the condensed phase despite the importance of gas generation. Spectroscopic evidence presented suggests gas generation aids in removing the molten boron oxide layer during combustion which can be utilized to improve the reactivity of boron-based additives in propulsion applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.