Abstract

A visualized macro thermogravimetric analyzer was utilized to gather data on sample weight, temperature, and image signals of centimeter-scale PET. The PET was subjected to both fast (above 300 K/min) and slow (below 25 K/min) heating rates. The experimental findings revealed that weight loss mainly occurred at different temperature ranges under fast (above 610 °C) and slow (400–520 °C) heating rates. The isoconversional method (ICM) and the distributed activation energy model (DAEM), both assuming single-step reactions, were employed separately to predict the conversion and rate of PET pyrolysis. However, the prediction error was considerable. To address this issue, a discrete distributed activation energy model (DDAEM) was developed, incorporating both single-step and double-step parallel reactions. The DDAEM yielded a prediction error within 10 %, which is better than ICM and DDAEM. Furthermore, all three models (ICM, DAEM, and DDAEM) indicated significant discrepancies in activation energies between fast and slow heating rates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call