Abstract

Persistent free radicals (PFRs) in biochar have been found to the transformation of organic contaminants in environment. However, there remains insufficient comprehension on the relationship of biochar aging with interfacial reactivity of PFRs to the degradation of phenolic compound in geochemical process. Herein, we studied both sorption and degradation of p-nitrophenol (PNP) on fresh and aged biochars via H2O2 aging under anoxic condition. With increasing aging extent, the enhancive proportion of O-centered radicals was observed progressively as indicated by increased g factors. The aging of PS350 annihilated the presence of PFRs in aged biochars of low-temperature, weakening PFR intensity. But, the aging of PS650 supplied more O-centered radicals for aged biochars of high-temperature, enhancing PFR intensity. This caused the decreased degradation on 5%PS350 and 15%PS350 (37.7–79.6% decline), whereas the increased degradation on 5%PS650 and 15%PS650 (33.3–55.8% increase). At similar intensity and species of PFRs, more adsorbed amount on fresh and aged biochars produced more degradation of PNP. Nevertheless, when PFR intensity of PS650 was much lower than that of PS350, despite high sorption capacity of PS650, the degradation amount of PS350 and PS650 was comparable. The results indicated that the reactivity of C-centered radicals of PS650 was stronger than that of O-centered radicals of PS350 in anoxic system. Overall, the interfacial reactivity of biochars was simultaneously regulated by the sorption capacity of biochars and intensity and species of PFRs. This work provides a deep perspective to the impact of biochar aging on the interfacial reactivity of PRFs to phenolic compound, which will be beneficial to accurately predict the fate of organic contaminant in carbon-rich environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call