Abstract

The Swedish final repository for short-lived radioactive waste (SFR 1) is located at Forsmark in Sweden. It holds low and intermediate-level operational waste from the Swedish nuclear power plants, as well as industrial, research-related, and medical waste. A variety of low molecular weight organic compounds are present in the waste or in its matrix. Such compounds can also be formed by chemical degradation of organic macromolecules. These organics can ligate to metal atoms forming stable complexes and also adsorb to the surface of cement, thereby influencing the net release of radionuclides from the repository. This motivates the study of the concentration distribution of complexing agents in the repository as a function of time. The following paper reports the results of mass transport modelling, describing the transport of complexing agents through the cementitous matrix in the rock vault for intermediate-level waste in the SFR 1 repository. Nitrilotriacetate (NTA) and isosaccharinate (ISA) have been investigated, where the former is considered to be non-sorbing and non-reacting, while the latter is produced from cellulose degradation and adsorbs strongly to cement. The 3D model considers advection, diffusion, and sorption of solvated species in cement pore water over a time period of 20,000years. The model accounts for the spatial distribution of the flow field in the repository structure and also considers changing groundwater flow during the investigated time period. It is found that 99% of the NTA is removed after approximately 4000years, while 90% of the ISA is retained in the rock vault after 20,000years. The maximum pore water concentration of ISA is found to be 8.6mol/m3 after approximately 2300years, based on the degradation of the deposited amounts of cellulose. Over the investigated time scale, the ligands retained in the repository can redistribute across several waste compartments where the organic compounds were not originally deposited. In the case of ISA this effect is dampened due the influence of sorption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.